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ABSTRACT

Tripod operators (TO's) are a versatile class of feature extraction operators for surfaces. They are useful
for recognition and/or localization based on range or tactile data. They extract a few sparse point sam-
ples in a regimented way, so that N sampled surface points yield only N-3 independent scalar features
containing all the pose-invariant surface shape infonnation in these points and no other infonnation.
They provide a powerful index into sets of prestored surface representations. A TO consists of three
points in 3-space fixed at the vertices of an equilateral triangle and a procedure for making several
"depth" measurements in the coordinate frame of the triangle, which is placed on the surface like a
surveyor's tripod. TO's can be imbedded in a vision system in many ways and applied to almost any sur-
face shape. Here the focus is an experimental study in which individual TO's are used to search a clut-
tered range image for one of 25 known shapes, typically in milliseconds, with very few false detections.
We believe that this simple way of using TO's, in conjunction with existing triangulation range sensor
technology. can be effectively applied to industrial parts recognition tasks. and with additional research,
to other applications.

1. INTRODUCTION

This work. is motivated by the long-standing observation that a small set (e.g.. six to twelve) ofJX>int sam-
ples of the surface of an object is highly infonnative. and that it ought to be JX>ssible to construct a pro-
cedure for mapping such data into the identity and/or pose of an object in essentially constant time. for a
significant range of cases. We have largely succeeded in doing this. using a geometric procedure called
the tripod operator (TO). A typical TO is applied to a range image in approximately 2 milliseconds. as
currently implemented on a Sun SPARCstation 10. resulting in a hypothesis about the surface under the
operator. Software optimizations are expected to reduce this to well below 1 millisecond. A range image
can be searched for a shape by repeatedly applying TO's at random places on the image. Potential appli-
cations inc1ude industrial parts recognition. target recognition. mobile robot vision. and face recognition.

In order to rapidly recognize objects based on surface shape, especially if the library of known objects is
large and/or the average complexity of each object's surface shape is large, one needs to make feature
measurements which are sufrK:iently informative, despite noise, that the reduction in the candidate set
per unit computation time is acceptable. For example, one might reasonably measure this by the reduc-
tion in the Shannon Entropy of the set of identities and/or JX}ses. By such a measure. steady progress has
been made in previous work. Grimson [4,5] and others [6,7,8.9] extensively developed the idea of
searching for associations between image features and model elementS consistent with geometric con-
straintS among the model elements, using interpretation trees to represent the consistent hYJX}thesised
associations (interpretations). However, interpretation trees require quadratic time processing per model.
This is mitigated by using particularly informative features. We have argued that TO's can be used
effriently as such features [1,2]. A second connection is that a TO can be regarded as precompiled
prepruned interpretation trees having sparse range pixels as ~ image features. This is their original
inspiration. Lamdan and Wolfson [10] contribute to effkiency in model-based vision by providing
precompiled geometric JX}inters among local features. This requires the ability to detect a reasonably
small number of reasonably stable interest points and to define informative features there, whereas TO's
are to be used anywhere on a surface and their informativeness can be looked up. Stein and Medioni [11]
describe local operators called "splashes" with attractive invariance pro~rties, but they have high



computational cost and depend on unoccluded and valid range pixels on certain geodesic lines. The
RANSAC method [12] uses sparse samples economically to test a fit to a specific class of funCtions. but
indexing is not provided; one must sequentially try function classes. Many kinds of local feature detec.
tors or matchers have been explored for range images. For example. [13] concentrates on dihedral edges
and [14] on the two principle curvatures of smooth surfaces. The principle limitation of most of them
appears to be their discriminating power per unit computation. For example, estimators of the two princi-
ple curvatures either provide us with two real numbers worth of indexing information (and direction
information). or the decision that the surface is not a good fit to a quadric in the current neighborhood.
The former case allows discrimination of roughly q2 local surface shapes if we can resolve q curvature
values in noise. The latter case requires us to continue looking for local feature information (perhaps a
dihedral will fit here or a quadric patch elsewhere). TO's provide one operation at a place on a surface.
yielding a feature vector of any dimensionality d. applicable to nearly any surface. and potentially
discriminating as many as roughly qd hypotheses about the object (and/or its pose) on which the TO lies.

Tripod Operators are "somewhat global" and can sometimes straddle many surface undulations with its
point samples. and span a large proponion of an object. They can operate on sparse regions of a dense
range map, sparse data acquired actively from a sequential random access range scanner (such as in
[15]), or via a tactile version of a TO. In earlier publications, we argue that the TO should allow very
fast recognition [1] and present supponing experimental evidence by discriminating 1 object from a
library of 10 using in some cases only one TO placement, using synthetic range data [2]. In [3] we
extend this to the case of noisy LIDAR range images of isolated real objects. using a Bayesian approach
to obtain reliable recognition using a small number (5 to 10) of low order (order 4) and high noise (1/10
the TO's edgelength) TO placements.

We have been studying TO's using a software system called TRIPOD, which allows various ex~riments
to be ~rfonned involving the application of various kinds of TO's to real or synthetic range images, and
the use of various representation and matching methods on the resulting feature space point sets. Our
overall research goal is to determine the limits of ~rfonnance of a vision system based on TO's, and to
realize that ~rfonnance in prototy~ vision systems. Perfonnance measures of interest to us include
speed, classi fication error, tolerance of noise and occlusion, library size, storage requirements, and ease
of representing new sha~s. Variables in such a vision system that effect ~rfonnance include

1. Edge length of operator
2. Order of operator
3. Effk":iency of the a1gorithm that computes the operator
4. What hypothesis verifier is used, if any
5. Represen~tion of the TO invariant signatures
6. Indexing method used to assess proximity of TO measurement to signature
7. Method for relating multiple TO's on the same object
8. Method for representing pose constraints
9. Use of probabilistic reasoning

The focus of this paper is the use of isolated TO placements to rapidly recognize instances of a set of 25
typical manufactured surface shapes in range images containing a variety of known and unknown shapes.
Items 4,7,8 and 9 above are outside the scope of this paper. Our two-pan research strategy is to first learn
how to obtain the greatest possible discrimination in the shortest time using individual TO placements,
and in other worX to exploit the relative pose of multiple placements to further increase performance.

2. REVIEW OF TRIPOD OPERATORS

2.1 Definitions and Properties
A tripod operator consists of three points in 3-space fixed at the vertices of an equilateral triangle of fixed
edgelength e, and a procedure for making several "depth" measurements in the coordinate frame of the
triangle. which is placed on the surface like a surveyor's tripod. These measurements take the fonD of



arc-lengths along "probe curves" at which the surface is inte~cted. Figure I shows three examples of
TO's. Figure la shows a very simple TO with one line probe fixed symmetrically with respect to the
rigid triangle ABC. The single scalar feature is the distance from the plane of ABC at which the probe
inte~c~ the surface. This resembles a mechanical optician's tool called a spherometer. We call the
number d of scalar features the order of the operator. Figures lb and lc show TO's that can be viewed as
a set of equilateral triangles hinged together so that all all d+3 poin~ can be made to contact a surface.
The angles of the d hinges are the features. We prefer this type (called linkable TO's) because of their
symmetry and uniform sensitivity to noise. A planar surface yields 8=1800 for all d feature componen~.
We will sometimes use 4> = 8 - 1800 instead of 8 for convenience. Many variations of these TO's could
obviously be constructed. Feature noise is related to range noise n by the approximate expression
n. :: 5lxn Ie, where n, is the feature error in degrees, and n is expressed in the same distance uni~ as the
edgelength e.

Figure 1. Examples of Tripod Operators: (8) Simple order 1 TO
with linear probe, (b) Order 3 linkable TO, (c) Order 9 linkable TO.

For an N-point TO, the N sampled surface points yield only N - 3 independent scalar features (the order
d is N - 3). These features contain all the surface shape infonnation in the 3N components of the points,
since they su~ to reconstruct the relative positions of the N points. They contain no other infonnation;
For example. they have complete six OOF invariance under rigid motions (the group R3XSO(3». Thus.
they depend on where the tripod lies on the surface. but on nothing else. A key property is that only a 3-
dimensional (at most) manifold of feature space points can be generated from a given surface. for any
dimensionality d of feature vector, since the tripod can be moved only in 3 DOF on a surface. This
allows objects to be densely sampled with TO's at preprocessing time with a manageable number of
operator applications (typically, a few thousand) to obtain almost all the feature vector values obtainable
from any range image of the object. This set is a kind of invariant signature. For brevity. we will call it
the signature of the object or surface (with respect to a particular type of TO). It can be stored in bins
(e.g.. of dimension 3 or 4) for later efficient access of near neighbors to TO features measured at recogni-
tion time. These bins can optionally contain precomputed probability densities. analytic expressions for
distances to nearby signature manifolds, and partial or complete descriptions of the relative poses of tri-
pods and models. all to serve various purposes in a recognition system.

2.2 Computing a Tripod Operator Placement -

Since in some applications of the tripod operator, the computation consistS only of placement and a little
indexing, the cost of placing the operator should be kept small. This can be done by effM:iently imple-
menting a procedure similar to the following. Consider placing the TO's of Figs. lb or lc on a dense
range map. Point A can be chosen as any point on the image surface. InterJX>lation is to be done locally
as needed (e.g., using piecewise triangular facetS). Point B can be found by moving along a line at orien-
tation a in image coordinates (pixel indices) until the 3D distance IABI . e. This can be done in lop-
rithmic time (essentially constant here) using binary search. Then we search the circle of radius .5""3 e
oriented coaxially around the center of the segment AB, using binary search, to find a point C close to the
surface. A similar circular search yields each remaining point. A key step in the circular search is the
mapping (specific to a range scanner's geometry) from a JX)int (x.,y,z) to the indices of the range pixel



whose ray (x,y,z) lies on. This allows Lhe Cront/behind decision required by the binary search. In the
case of a sequential random access range scanner, it may be effK:ient to moootonically search el1i~cal
paths in image coordinates until the two distances being enforced (e.g., IACI=e and IBCI=e) are roth
correct. The ellipses here are the projections of the previously described circles onto image coordinates.
Finally, in the case of a tactile TO, the computation is mechanical; the feature values are to be read from
position transducers (e.g. from linear potentiometers by an ND converter).

2.3 Symmetries of Surfaces and of Tripod Operators.
Surfaces with one symmetry. such as extrusions. surfaces of revolution. and helical projections produce
only a 2-dimensional manifold in feature space. Cylinde~. having two symmetries. produce only a
nearly circular I-dimensional curve, and spheres a single point. Scaling a TO by changing its edgelength
does not effect the signature of surfaces swept by a line with one point fixed (e.g.. cones. planar n-hedral
vertices, and planar dihedral edges). Regardless of the surface, an operator with a 3-fold symmetry (e.g.,
those in Fig. I), produces signatures unchanged by cyclicly permuting each triple of corresponding
features. In Fig. lc, the three 3-cycles (1,2.3), (4.5.6), and (7.8.9) show this property. for features ~l
through 4>9, respectively. This allows a 3-fold storage reduction, e.g.. by permuting the features so that ~l
is the largest. If the TO. in addition. has handedness symmetry (as our examples do), the signature can be
modified by a procedure that allows recognition of the "other side" of any surface already recognizable.
We call this inversion of a signature. Il is done by by transposing certain pai~ of corresponding features
(e.g., (7.5). (1.2). (4.8), and (6,9) in Fig. lc) and replacing each feature value ~ with~. Also. the signa-
ture of the opposite-handed (reflected) version of a surface can be found by performing those transposi-
tions without negating the features.

2.4 The Structure of the TO Signatures of Some Simple Shapes
We have been studying the shapes of TO signatures [17] in order to understand how they can overlap and
to find ways to approximate them with algebraic and semi-algebraic expressions. Such approximations
are expected to greatly reduce storage requirements for large libraries. The signatures of order 3 opera-
tors (Fig. 1 b) were rendered as a rotating cloud of points on a com puter; selected 20 snapshots are shown
in Fig.2. In the special case of "smooth., surface regions. the signature is nearly a circular ring coaxial
with the diagonal axis. The offset and radius of the ring can be readily used to compute estimates of the
principle curvatures and other differential geometric parameters [17]. Surfaces with C 1 or C 2 discon-
tinuities tend to produce signatures with similar numbers and kinds of discontinuities (e.g.. Fig. 2c,d), and
have roughly commensurate complexities of description. Thus. this umbrella-shaped 2-manifold can be
well approximated with a few polynomials, whereas the discrete signature might need 20,(XX) points (see

Fig. 4) for thorough saturation.
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Figure 2. 2D projections of TO signatures taken with the TO of Fig.
lb. (a) Superimposed signatures of six hyperbolic paraboloid
patches (large rings), four elliptic patches (rings lying on a cone), and
10 spheres (the points). (b) A torus; the signature is a piece or cone
in .1.2.3 space. (c,d) A 900 planar dihedral, viewe4 diagonally and
along .1' respectively. All signatures or this TO have al/easl a 3-rold
rotational symmetry about the diagonal.1 =.2=.3; all signatures in
(a) and (b) are surfaces or curves of revolution.



3. CONDmONS FOR RELIABLE RECOGNITION USING A SINGLE TO PLACEMENT

The low dimensionality of TO signatures (three. at most) typically allows the computation and storage of
signatures containing (to a reasonable resolution) all feature vectors obtainable from a given surface
shape. regardless of viewpoint. Moreover. since the feature space can have high dimensionality (d=9 in
these ex~riments) the signatures of different objects' surfaces frequently have little or no intersection.
allowing recognition of some objects with only one placement of a TO on the image of the object. Our
ex~riments show that this circumstance occurs frequently with common shapes. and also that signature
overlap can usually be dealt with. A deterministic viewpoint is taken here (When range error is a large
fraction of TO edgelength. a probabilistic approach is essential).

3.1 False Positives
We will now derive suffK:ient conditions for precluding any false positive detections. Let us denote by A
the set of all feature-space points obtainable by applying a cenain TO to surface shape A. We call this
the exact signature of shape A. Let A ~ denote some signature of shape A such that the greatest L2 dis-
tance from any point in A to the nearest point in A ~ is~. We call this a signature of A saturated to ~.
This kind of signature can be obtained in practice by applying a TO a finite number of times to a surface.
We similarly define B and B~ for shape B. Now let A-denote the set obtained by deleting from A 6 all

points within an L2 distance E of any point in B~. We call this procedure overlap removal and speak of
subtracting one signature from another. Now let v be the maximum L2 distance that sensor (and other)
error can introduce. and Bot the set of points within v of B. Then Bot includes all points actually obtain-
able by placing a TO on shape B. Summarizing key statements from above.

I b+-b II < v.
lb-bSII < O.
I I a--bs I I > E.

1. If(b+ e B+),3 (b e B) S.t.
2. If (b e B),3 (b& e B&) S.t. I
3. If (a- e A-) and (bS e B&),

Now consider a placement of a TO on shape B. producing the noise-coffilpted feature point b+ E B+
instead of the corresponding exact point be B. Suppose a- is the nearest point in A- to b+. Then from
1..2. and 3. above. II b+ -a- II ~ E-&-V. This means that we can never mistake a TO measurement taken
from shape B for one taken from shape A using a threshold 't if E ~ o+v+'t. That is. if we index into the
stored signature A-using a measured feature value f. and find that a- E A-is within 't of r. then if
E ~ o+v+'t. we are sure that f is not in the set B +. and thus was not obtained from shape B. Figure 3
makes the inequality relation clear geometrically.

Figure 3. Schematic illustration of overlap removal for TO feature

space signatures

3.2 False Negatives
If t<S+v, note that a TO placement can fail to detect a shape due to insufficient saturation. This is gen-
erally of less importance than false positives. because negative classi fications are simply the deferring of
a decision. resultin2 in extra expended time to find an instance of the shape. If we want to be sure that



every TO measurement from shape A wililcad lO detection (allowing false positives from other sha~s),
we could test for nearness of the measured point to the signature A'" using a threshold 't > O+v. In sec-
tion 4 we will see that the results ofseclion 3 are overly stringent from a statistical point of view, e.g., we
can violate E ~ o+v+'t by a signi ficanl margin and still have very few false positives.

4. EXPERIMENTS

The purpose of these experiments is to study the discriminating power of an individual TO placement
Therefore. we use no preprocessing (except range rectification) and no hypothesis verification here.
Nevertheless. this "pure" approach is quite powerful in many circumstances. In the experiments TO sig-
natures were generated for 25 surface shapes. Next. overlap removal and analysis was done. followed by
recognition experiments in which a speci lied shape is searched for until found.

4.1 Obtaining The Signatures
TO signatures were generated for 25 surface shapes by randomly placing an order 9 TO (Fig. lc) on syn-
thetic range images of each shape 50.(xx) times. The resulting signatures were stored as discrete feature-
space points. with a numerical precision of 1 °. Duplicate feature vectors were removed, reducing the
50,(XX) points to as few as 61 points for the large cylinder and as many as 36,(XX) for the outside trihedral
comer. Then the 3-fold symmetry of this TO (see section 2.3) was used to slightly increase the density of
the signatures. These signatures correspond to A 6 of section 3. although 0 was not directly controlled.

The 25 shapes were chosen to include various discrimination challenges, e.g., cylinder vs torus with the
same minor radius. and the hemisphere/cylinder (with C2 discontinuity) dihedral region vs the cylinder or
sphere. The following are the names and descriptions of the shapes (e = TO edgelength, r = radius):

0 plane
1 cy12e
2 cy12p5e
3 sph2e
4 sph2p5e
5 outcomer
6 ballcy12e
7 ballcy12p5e
8 incomer
9 pcy12e
10 pcy12p5e
11 dh270
12 dh90
13 tor2e4e
14 tor2p5e4e
15 phole2e
16 phole2p5e
17 dh225
18 dh135
19 peg2e
20 edgeoole2e
21 peg2p5e
22 edgehole2p5e
2 3 thshe If
24 thnotch

plane
cylinder; r = 2e
cylinder; r = 2.5e
sphere; r = 2e
sphere; radius = 2.5e
outside 90° trihedral comer
hemisphere-capped cylinder; r=2e
hemisphere-capped cylinder; r=2.5e
inside 90° trihedral comer
plane-capped cylinder; r=2e
plane-capped cylinder; r=2.5e
2700 planar dihedral (convex)
90° planar dihedral (concave)
torus; r=2e, R=4e
torus; r=2.5e, R=4e
plane-bottomed hole; r=2e
plane-bottomed hole; r=2.5e
225° planar dihedral (ramp down)
135° planar dihedral (ramp up)
cylinder pe~ndicular to plane; r=2e
cylindrical hole in plane; r=2e
cylinder pe~ndicular to plane; r=2.5e
cylindrical hole in plane; r=2.5e
planar trihedral; 90°,90°,270°
planar trihedral; 90°,270°,270°

Some are inversions of each other; (5,8), (23,24), (9,]5), (10,]6), (11,12), and (17,18). In these cases we
generated the latter by invening the data from the fol11ler (see section 2.3). We see in Table 1 that most
pairs of the 25 shapes' initial signatures were already entirely disjoint (separation> 5°) including a
cylinder (2) and the torus (14) with the same minor radius. Most ambiguous points were from shared



pans; an inside trihedral corner (8) contains an inside dihedral edge (12). Later, we will use overlap
removal to make the final signatures (nearly) disjoint by design.
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Figure 4. Saturation graphs for four representative shapes.
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The results of section 3 show the importance of highly saturated signatures (small 0). Therefore we have
studied the dependence of the degree of saturation on the number n of randomly placed order 9 TO place-
ments. for various shapes. Figure 4 shows log/log plot of the average L2 distance 0' (in degrees) of a
feature s~ace point to its nearest neighbor versus n. We found that the dependence is approximately
0' = c In 1 t, where k is approximately the dimension of the signature manifold. k = .952 for the cylinder.

whose manifold has dimension 1. k = 1.89 and 1.92 for the 2250 and 2700 dihedrals. respectively. whose
manifolds have dimension 2. and k = 2.94 for the fully three dimensional outside corner. The k values
are slightly lower than the corresponding dimensionality primarily because of low-dimensional
subshapes (e.g.. the plane (k=0) is in the n-hedraJ shapes). These empirical results are consistent with the
observation that the density of n random points on a k-manifold is approximately proportional to nt.
Note that 0' is not the same as 0; e.g.. for pcyl2p5e. 0'=3.4, while about .1 'To of new points from this sh~
were fanher than 100 from their nearest neighbor in our signature. Thus 0 > 100.

4.2 Signature Overlap
Next, pairs of signatures were processed to remove overlap (E = 5°) with other shapes' signatures. Cer-
tain of these "set subtractions" were forbidden; e.g., we did not allow shapes that are pans of other shapes
to be deleted. For example we did not "subtract" dh90 from plane. The full set of forbidden pairs is
(5,8,9,10,11,12,15,16,17,18,19,20,21,22,23,24) from 0, (6,9,19) from 1, (7,9,10,21) from 2, 6 from 3,7
from 4, (5,23,24) from 11, and (8,23,24) from 12, referring to the list above. Table 1 was computed
before overlap removal, showing the percentage of shape A left after subtracting shape B, for all 252
pairs. Note that most of the signature pairs have little or no overlap, allowing easy discrimination.



0 1 2 3 4 $ , '7 I 9 10 11 12 13 14 1$ l' 1'7 11 1920 21 22 2324
0 : -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 : 0 -- 0 0 0 0 2$ 0 0 9 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
2 : 0 0 -- 0 0 0 0 21 0 6 11 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 : 0 0 0 -- 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 : 0 0 0 0 -- 0 0 '7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ : -- 0 0 0 0 -- 0 0 0 I 9 -- 0 0 0 0 0 3' 0 0 1'7 0 11 12 43
6 : 0 -- 0 -- 0 0 -- 0 0 10 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
'7 : 0 0 -- 0 -- 0 0 -- 0 6 11 0 0 0 1 0 0 0 0 0 0 4 0 0 0
I : -- 0 0 0 0 0 0 0 -- 0 0 0 -- 0 0 '7 9 0 36 1'7 0 11 0 43 12
9 : -- -- -- 0 0 '7 26 2' 0 -- 30 11 0 0 0 0 0 11 0 3 I 4 9 1 6
10: -- 0 -- 0 0 I 0 31 0 33 -- 12 0 0 2 0 0 1'7 0 0 9 4 10 1 6
11: .- 0 0 0 0 49 0 0 0 '7 9 -- 0 0 0 0 0 32 0 0 1'7 0 19 12 43
12: .. 0 0 0 0 0 0 0 49 0 0 0 -- 0 0 '7 9 0 32 1'7 0 190 43 12
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 160 0 0 0 3 0 0 3 0 0 0 -- 0 0 0 0 0 0 1 0 0 0
1$: -- 0 0 0 0 0 0 0 '7 0 0 0 110 0 -- 30 0 11 I 3 9 4 , 1
1': -- 0 0 0 0 0 0 0 I 0 0 0 12 0 0 33 -- 0 1'7 9 0 10 4 6 1
17: -- 4 10 0 0 3 2 2 0 $ 4 $ 0 0 0 0 0 -- 0 0 2 1 3 1 2
11: -- 0 0 0 0 0 0 0 3 0 0 0 $ 0 0 $ 4 0 -- 2 0 3 1 2 1
19: -- .- 0 0 0 0 26 0 13 9 0 0 21 0 0 '7 I 0 23 -- 0 34 0 14 2
20: -- 0 0 0 0 13 0 0 0 '7 I 21 0 0 0 9 0 23 1 0 -- 0 34 2 14
21: -- 0 -- 0 0 0 0 21 13' 11 0 22 0 1 '7 I 0 21 330 -- 0 13 2
22: -- 0 0 0 0 130 0 0 '7 I 22 0 0 0 , 11 21 0 0 330 -- 2 13
23: -- 0 0 0 0 43 0 0 49 $ '7 II 99 0 0 '7 9 19 30 29 1329 14 -- $1
24: -- 0 0 0 0 49 0 0 43 '7 9 99 II 0 0 $ '7 30 11 13 29 14 29 $1 --

Table 1 Overlap percentages (.. denotes 100%) for raw signatures,

before overlap removal; shape indexed at left subracled from shape

indexed at top, \\'ith separation threshold £=5°.

4.3 Recognition
Each signature was stored in bins in a three-dimensional array (using the first 3 feature components) to
facilitate near-neighbor lookup. At recognition time our system randomly placed TO's on the synthetic
range image of Fig. Sa, which contains instances of all 25 shapes, and labeled the locations of the TO's as
ambiguous or unknown (white) or as the shape currently being sought (black). The decision rule was to
note whether the distance from the TO feature vector to the nearest point in the signature at hand was less
than 't, which was set to 5°. For each of the 25 shapes. with range noise initially zero to help isolate error
sources, we applied the TO enough times to obtain 50 correct detections of the shape, and recorded vari-
ous results such as the mean time (in TO operations) between detections (MTBD) and data on any false
positive detections. The MTBD can be regarded as the ratio of the image area to the "effective area" of
the shape sought, for a particular TO size e.

Figure 5. Noisy range images sho\ving reliable detection of shapes
by TO's; (a) tor2p5e4e is detected in 8 placements in a synthetic
image. (b) dh270 is detected in 8 placements on a LmAR image with
TO edgelength = 7 cm. Both took approximately SO milliseconds.



About 63% of the TO placements on the image of Fig. Sa aborted due to contact of a probe point with a
jump boundary, which is locally detected by pixel disparity. This is typical for cluttered sce~s and is a
highly effrient substitute for image segmentation. The following results are described for non-aborted
placements. The smallest MTBD yaJues were for plane (2.74) and the tori (both about 5). The largest
was for phole2e (483), the small plane/cylinder dihedraJ at the bottom of the small hole.

The estimated mean time between false positive detections (MTBF) was ~ (none observed in several
thousand placements) for 12 shapes and varicd from 17.088 placements for incorner to 127 for pcyl2e
(pcy12pSe was falsely detected). Overall, the results showed very few false positives. which were pri-
marily due to the lack of sufficiently exhaustive signatures. leading to failure to delete some point com-
mon to two shapes. False positives due to unknown objects are more diffrult to prevent, but are fairly
rare. The false positives are all due to violation of E ~ o+v+'t. If 0 were a (exact signature). SO ~+O+So
would hold. precluding false positives. However. 0 exceeds 10° in some of the signatures used. due to
small ponions of the exact signature B being fanher than 100 from the stored signature. This causes no
trouble for most pairs. because they are already separated by much more than the imposed E before over-
lap removal. However. our pcyl2pSe signaturc has both high 0 and high overlap with pcyl2e. causing the
above problem. We found that we could drive sharply down the false positive incidence by either
increasing E. which had the side effect of increasing the MTBD by introducing false negatives. or by
sampling more to decrease O. particularly at the low density places in the signature. The laner is more
anractive. because it does not compromise the MTBD rates significantly. We plan to pursue the con-
struction of uniform density signatures with tightly controlled 0 to address this issue.

Having discussed how to avoid shape confusions in the absence of noise. we ran some recognition exam-
ples with added range noise of peak value e/40 (edgelength e=.2. noise = .005). This yielded a peak dis-
placement v=6.5° in feature space. For example. for the two tori. with t = 5. we found that at this noise
level, well within the capabilities of various existing range sensors [15,17], there were no false positives
in thousands of trials. and only 10% of the TO's falling on the tori failed to detect them. Their signatures
are only ~ apart at their nearpoints. This violates £ ~ o+v+t (£=7.0=1, v=6.5. t=5). but the probability
of the vectors in Fig. 3 aligning just right to cause a false positive appem small, both considering the
geometry of Fig. 3 and the experiments. Repcaling this with range noise e(20. we found that the large
torus was mistaken for the large cylinder 10o/c of the time (all of cyl2p5e lies within 6.80 of tor2p5e4e),
but all tor2e4e detections were correct. In figure 5b. we search a LIDAR image for the dihedral dh270
with range noise = e/23 (-3mm). The MTBD is about 15 placements. and we saw no false positives. Our
next step will be to seek a systematic way lO set £, t and O. given the average noise. for optimal perfor-
mance.

S. CONCLUSIONS AND FUTURE DIRECTIONS

We have studied the ability of individual order 9 TO's to discriminate 25 surface shapes in a cluttered
range image and concluded they can in many circumstances do so rapidly and with very few false IX>si.
tive detections. Conditions for guaranteeing this were derived. A TO can be applied and interpreted in
less than 2 milliseconds on a Sparc Workstation. We plan to reduce this time by software optimization.
and to study analytic approximations of TO signatures. combining IX>se constraints using multiple TO
placements. probabilistic approaches. and other topics aimed at finding the limits of their performance.

We ~lieve that one of the most promising potential applications of TO's is the recognition and localiza-
tion of industrial pans. because (a) TO's provide the speed frequently required for economic viability. (b)
range scaMer technology has been rapidly achieving the requisite resolution. speed and cost. and (c) the
market is broad. including automatic assembly, inspection and materials handling. Other JX}tential appli-
cations include automatic target recognition with LADAR. a JX}rtable "seeing eye stick" for the blind that
names obstacles such as "step down", pole 20° left. etc., and AGV navigation by recognizing existing
indoor features. The latter might be worthwhile if the same vision system is used to recognize objects in
"gopher" tasks. Also, we plan to study the effectiveness of TO's to face recognition, using a statistical
approach similar to that in [3]. In general, TO's are applicable to the recognition of a wide variety of



objects for which reasonably accurate rOlnge images can be economically obtained. Exceptions include
thin wire-like objects. on which the sample points of the TO are unlikely to fit, and objects for which the
reflectance marl<.ings contain essential infonT1Oltion. Some of the latter may yield to a registered range
and intensity approach that unifies tripod opcrOllors with existing OCR methods.
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